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Abstract

Background:  Alzheimer’s disease (AD) is a common and severe neurodegenerative disorder. Human telomeres are fundamental for the 
maintenance of genomic stability and play prominent roles in both cellular senescence and organismal aging. Regulation of telomere length 
(TL) is the result of the complex interplay between environmental and genetic factors. Alterations in TL are increasingly being studied as a 
possible risk factor for AD, and published studies on TL in AD show discrepant results, highlighting the need for a meta-analysis.
Methods:  In the current study, we carried out a meta-analysis of published studies of TL in AD patients and healthy controls. PubMed, Web of 
Science and Google Scholar databases (from inception to September 2015) were used to identify relevant articles reporting TL in humans with 
AD, from which we retrieved data such as sample size, experimental methods, and mean TL for cases and controls. A random-effects model 
was used for meta-analytical procedures.
Results:  The meta-analysis included 13 primary studies and demonstrated a significant difference in TL between 860 AD patients and 2,022 
controls, with a standardized mean difference of −0.984 (confidence interval: −1.433 to −0.535; p value: <.001).
Conclusions:  Our results show a consistent evidence of shorter telomeres in AD patients and highlight the importance of the analysis of 
epigenomic markers associated with neurodegeneration and with the risk for common and severe neurological diseases, such as AD.
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Introduction

Alzheimer’s disease (AD) is a common and severe neurodegenerative 
disorder (1). Genomic studies have identified several causal genes 
for hereditary subtypes of AD (such as APP, PSEN1, and PSEN2) 
and susceptibility genes for its multifactorial forms (such as APOE, 
CLU, and CR1) (1,2). Several theories about the etiology and patho-
physiology of AD have been developed, which highlight the impor-
tance of mechanisms involved in the response to cell-intrinsic and 
cell-extrinsic stresses and of alterations in neural plasticity (1,3).

Human telomeres are ribonucleoprotein structures that consist 
of a repetitive DNA sequence (TTAGGG) and a core of associated 
proteins called shelterin. The capping function of telomeres at the 
extremities of chromosomes is fundamental for the maintenance of 

genomic stability (4). Compelling evidence has shown that telomere 
shortening leads to cellular senescence and is also present with aging 
in several organisms. In fact, alterations in telomere length (TL) have 
been reported as critical factors in age-related diseases, including 
cancer and neurodegenerative disorders (4). Regulation of TL is the 
result of the interplay between multiple environmental and genetic 
factors. For instance, it has been suggested that telomere mainte-
nance mechanisms play an important role in the response and plas-
ticity of postmitotic neurons to oxidative and genomic stress (4,5). 
TL is increasingly being studied as a possible epigenomic marker 
associated with several neuropsychiatric disorders, such as AD, 
Parkinson’s disease, vascular dementia, unipolar depression, bipolar 
disorder, and schizophrenia, among others (6).
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Results from published studies for TL in AD are contradictory (7,8), 
highlighting the need for a meta-analysis. In the current study, we car-
ried out a meta-analysis of published studies for TL, which compared 
DNA samples of AD patients with samples from healthy controls.

Methods

We followed the recommendations of the PRISMA statement (9) 
for reporting of meta-analyses (Supplementary Figure S1). There 
was no previously published review protocol. We searched for origi-
nal studies analyzing TL in AD patients and control participants in 
the PubMed, Web of Science, and Google Scholar databases (from 
inception to September 2015). We combined disease search terms 
“Alzheimer’s disease” and “telomere.” In addition, we searched ref-
erence lists of relevant review and original papers to identify addi-
tional papers not covered by the electronic search of abstracts.

We included articles published in English in peer-reviewed jour-
nals that described results from case–control studies analyzing the 
association of TL with AD in different ethnic populations. Exclusion 
criteria were as follows: lack of control groups, analysis of other 
types of dementia, or studies of telomerase activity.

We extracted the following information from each one of the 
included studies: year, country, sample size, age and gender distri-
butions, criteria used for AD diagnosis, disease severity and dura-
tion, cell types used for DNA extraction, methodologies used for the 
analysis of TL, and TL data (mean and SD) for patient and control 
groups. In cases of missing data, we contacted the corresponding 
authors to ask TL data that were not available in the main text of 
the articles or in the Supplementary Material. Quality assessment 
of included studies was carried out with a modified version of the 
Newcastle-Ottawa Quality Assessment Scale, as proposed by Colpo 
and coworkers (10) for meta-analyses of case–control studies of TL. 
This scale evaluates three dimensions (selection, comparability, and 
exposure), for a possible maximum of seven points. Study selection 
and data extraction and synthesis were performed and checked by 
two independent investigators.

For the meta-analysis procedures, we used the freely available 
Meta-Analyst program (11). It is a cross-platform software that 
allows the analysis of case–control association studies and other 
advanced approaches (eg, implementation of random-effects mod-
els, sensitivity analysis, and generation of forest plots). Following 
recommendations in the area, we used random-effects models and 
calculated the I2 statistic for heterogeneity (12). Standardized mean 
differences were used as the main index of effect sizes in these meta-
analyses. Subgroup analyses were carried out for age at examina-
tion of the samples, for methods used for TL measurement, and for 
cell types employed for DNA extraction (Supplementary Table S1); 
a sensitivity analysis was carried out with the leave-one-out method.

Results

Thirteen primary studies were included in the current meta-analysis 
for AD (7,8,13–21). It was not possible to include two additional 
studies, which did not provide TL data (22,23) (Supplementary 
Figure S1). The majority of the studies used the NINCDS-ADRDA 
criteria for the diagnosis of AD and few reported data for disease 
duration and severity. A  quality assessment of included studies 
showed that several articles did not report information on selec-
tion of participants and their comparability (Supplementary Table 
S2). No studies were excluded due to the results of the quality 
assessment. Details of included studies are provided in Table 1 and Ta
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Supplementary Table S1, and data for 860 AD patients and 2,022 
controls were analyzed. Sample sizes for the AD patient groups in 
the different studies ranged from less than 20 to more than 300. 
An important fraction of the studies used genomic DNA extracted 
from leukocytes and quantitative polymerase chain reaction–based 
methods for analysis of TL.

We applied random-effects meta-analyses to the available data 
and a significant difference in TL between AD patients and controls, 
with a standardized mean difference of −0.984 (confidence interval: 
−1.433 to −0.535; p value: <.001; Figure 1). There was evidence of 
heterogeneity (I2: 91.8%) and a sensitivity analyses (using a leave-
one-out method) showed that no single study was responsible for the 
pooled result of the meta-analysis (Figure 2). A subgroup analysis 
showed that studies with younger patients (Supplementary Figure 
S2) and that employed terminal restriction fragment methods 
(Supplementary Figure S3) showed preliminary evidence for a pos-
sible larger effect on shorter telomeres in AD patients and that the 
significant association was more evident in studies carried out with 
DNA from leukocytes (Supplementary Figure S4).

Discussion

Although TL has been evaluated as a possible biomarker for AD 
in several publications, no meta-analysis has been conducted so far 
to assess the relative importance of such results (6,24). In the cur-
rent study, we performed a meta-analysis for 13 published studies 
and found consistent and significant evidence of shorter telomeres 
in samples from AD patients (p value: <.001). A sensitivity analysis 
showed that no single study was responsible for those findings and 
a subgroup analysis showed that the finding of shorter telomeres in 
AD patients was more evident in studies that were carried out with 
DNA from leukocytes. This finding from the available cumulative 
evidence (standardized mean difference of −0.984) is consistent with 
results from individual studies that reported shorter telomeres in AD 
patients (7,8,14,17,18,20,21).

Several studies used DNA extracted from leukocytes, taking into 
account its broad and easy availability for large samples of living 
patients (25). It will be important to include in future studies DNA 

extracted from matched pairs of affected and healthy brain tissues. 
It is possible that the interstudy variability in the TL data shown in 
Table 1 is given by the use of different approaches for normalization 
of quantitative polymerase chain reaction results (26). We did not 
find studies on TL and AD in African, South Eastern Asian, or Latin 
American countries, populations that have a large burden of neu-
rodegenerative disorders and particular genetic and environmental 
features (27).

It has been suggested that telomere maintenance mechanisms 
play an important role in the response and plasticity of postmitotic 
neurons to oxidative and genomic stress (5,28). It has been shown 
that the third generation of knockout mice for the telomerase RNA 
component TERC (G3Terc−/−, which display short telomeres) have 
reduced neurogenesis in the dentate gyrus, in addition to neuronal 
loss in hippocampus and frontal cortex and short-term memory 
dysfunction (29). On other hand, telomere shortening reduced the 
number of amyloid plaques and reactive microgliosis in APP23 
transgenic mice (29). There is also evidence showing that newly 
generated neurons and mature neurons have low telomerase levels 
and are more susceptible to the effects of DNA damage (30), that 
the antidepressant-effect of telomerase overexpression is possibly 
associated to adult neurogenesis mechanisms (31), and that lithium 
normalizes telomerase activity (32). As oxidative stress and inflam-
mation are increased in aged individuals, these mechanisms could 
be related to telomere shortening (6). In AD patients, the shortest 
telomeres have been associated with high levels of the proinflamma-
tory cytokine tumor necrosis factor-α (8) and there is evidence that 
markers of oxidative stress are associated with telomere shortening 
(6). There is evidence showing that microglial cells, rather than post-
mitotic neurons, undergo replicative senescence. The microglial acti-
vation could contribute with the inflammatory microenvironment 
ultimately promoting disease progression (6).

Finally, emerging evidence suggests that perceived stress and 
lower physical activity, known risk factors for AD, are associated 
with shorter telomeres (33,34). King and coworkers (35) identified 
a significant correlation between leukocyte TL and volume of total 
brain and specific regions, such as hippocampus. An inverse corre-
lation between leukocyte TL and hippocampal volume was found 

Figure 1.  Forest plot for the meta-analysis of telomere length and Alzheimer’s disease (AD). p value: <.001, for a random-effects Model. A standardized mean 
difference below zero means shorter telomeres in AD patients, in comparison with control subjects.
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in nondemented individuals that were APOE 3/3 carriers (but not 
in APOE 4 carriers), and it was also found that APOE 4 carriers 
had longer telomeres and a higher attrition rate (36). APOE 4 
carriers with longer telomeres were associated with worse perfor-
mance on episodic memory tasks (37). A number of epigenetic fac-
tors, such as modifications of DNA methylation in the promoter 
region of the catalytic subunit of the telomerase enzyme and sev-
eral noncoding RNAs, are known to have an effect on telomere 
dynamics (38) and could be related to shorter telomeres in AD 
patients.

Limitations of the current study include the retrospective nature 
of our meta-analysis, the inclusion of study-level data, and being 
underpowered for the subgroup analyses. The strengths of our study 
involve the inclusion of all published studies with available data for 
TL and AD and the use of state of the art biostatistical methods for 
meta-analyses.

Future studies using high-throughput approaches, such as next-
generation sequencing, could identify novel genetic and epigenetic 
factors (39) that influence TL in AD patients and in its presympto-
matic stages (40). It would be important to carry out longitudinal 
studies for TL and AD in multiethnic populations that control for 
genetic and environmental variables and that include quantitative 
markers of disease progression.

Supplementary Material

Please visit the article online at http://gerontologist.oxfordjournals.org/ 
to view supplementary material.
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